
A Composite Agent Architecture for Multi-Agent Simulations

Michael VanPutte
Brian Osborn

John Hiles
MOVES Institute

Naval Postgraduate School
1 University Circle

Monterey, CA 93943-5118
831-656-4074, 831-656-3733,831- 656-2988

michael.vanputte@us.army.mil, baosborn@nps.navy.mil, jehiles@nps.navy.mil

Keywords:
multi-agent systems, multi-agent simulations, information assurance

ABSTRACT: The MOVES Institute’s Computer-Generated Autonomy Group has focused on a research goal of
modeling complex and adaptive behavior while at the same time making the behavior easier to create and
control. This research has led to several techniques for agent construction, that includes a social and
organization relationship management engine, a composite agent architecture, an agent goal apparatus, a
structure for capturing and applying procedural knowledge (tickets), and the ability to bring these technologies to
bear at the right time and in the proper context through connectors. This paper provides an overview of the
architecture and discusses the implementation of this architecture in a multi-agent simulation of the information
assurance domain.

1. Introduction

In 1999 the Naval Postgraduate School MOVES
(Modeling, Virtual Environment, and Simulation)
Institute added a new research direction in the area of
multi-agent systems and computer generated
autonomous behavior. From the outset, MOVES agent
research has had two goals. First, to bring rich,
complex, adaptive behavior to Department of Defense
(DoD) related models, simulations and other systems
through the application of multi-agent technology.
And second, to make this adaptive behavior far easier
to achieve and control. This latter characteristic will
allow problem solvers to focus their attention and
intellect on the agent’s problem solving behavior and
not on the implementation mechanism. The intent is to
shift the focus from “how do we do this?” to “what can
we do with this?”

This paper describes several innovations in the field of
agent-based system simulation using information
assurance as the domain of discourse and introduces
two new research areas being investigated in the
MOVES Institute.

 Portions of this paper originally appeared in [1].

2. Semi-Fluid Software Structure and
Emergent Behavior

2.1 Introduction

Software development has traditionally focused on
building software based on rigidly structured
architectures with terms like “structure” and
“architecture” usually referring to fixed and immutable
relationships among the components inside the
software. Many in the computer science and software
engineering community assume structure must be rigid
and tightly bound at design time if a program has any
chance of meeting its design goals. This outlook is
analogous to our view of a new highway system that is
designed on paper and constructed with concrete and
steel to meet the forecast needs of a growing city.
Once built, the highway system remains fixed and
static unless new construction occurs. It would be
absurd to expect it to mold itself into new forms to
meet growing infrastructure and changing traffic
patterns. This same thinking has held true for
traditional software designs. The architecture is fixed
at design time; its structure is inert.

The study of computer generated autonomous behavior
is supplementing this thinking by exploring the use of
multi-agent systems (MAS) to build software that
modifies its own structure, within a set of constraints,
to maintain close contact with a dynamic environment.

MAS research at the MOVES Institute is founded on
the premise that semi-fluid software structures are not
only possible, but essential to developing truly adaptive
simulations and modeling emergent behavior.

2.2 A Design Paradigm Shift

A real challenge when first encountering multi-agent
system simulations is coming to grips with emergent
behavior in software. Traditional problem solving in
software engineering is direct in the sense that the
developer conceives of an algorithmic solution and
transfers that solution to software. Software
development rigor and practice is used to insure the
code will produce an exact execution of the algorithm.
In direct solutions, the programmer knows exactly how
to solve the problem and the software implements that
solution precisely. This approach is fine for problems
where the domain is well known, and the relationships
are static, finite and well defined. Direct solution
systems are somewhat analogous to well-behaved
functions. For a given input, the designer knows what
to expect for the output. Surprises are a clear
indication of a bug in the system.

In sharp contrast, surprises in MAS simulations are not
only okay, but are the desired end, as long as the
system operates within boundaries that are explicitly
determined. The software is intended to surprise the
designer within a system of constraints! This is
possible through the use of software agents that
discover an indirect path to the solution, thereby
allowing for the possibility of arriving at a solution the
designer may not have previously considered. In this
way, multi-agent systems are capable of producing
innovative solutions. In the field of information
assurance (IA), the relationships between the human
actors and the technological components are dynamic
and complex. The ability to achieve malicious goals is
often an ‘out-of-the-box’ application of existing
capabilities. An innovative MAS system is exactly the
right tool for exploring the IA domain.

3. Information Assurance

Information Assurance is concerned with
“…protect(ing) and defend(ing) information and
information systems by ensuring their availability,
integrity, authentication, confidentiality, and non-
repudiation” [2]. The system is not restricted to
technological components; it includes human actors
that interact with the technical components.

IA deals with adaptable humans and computational
devices that are interconnected through webs of
communications networks. Software and devices
adapt, both autonomously and through human
interaction, to perform tasks. Humans adapt
themselves, communication links, devices, and the
software running on those devices (sometime
unknowingly) to better achieve their goals. The
domain is a highly connected, dynamic environment,
where small changes in one part of the environment
can have tremendous, cascading effects in other parts.

This paper introduces a multi-agent simulation that is
an implementation of a computational model of IA [3].
MARIA (Multi-Agent Research in Information
Assurance) implements five agent-based system
simulation innovations and provides an environment
where investigators can conduct research and gain
insight on information assurance.

4. Innovations in Agent Research

The Computer-Generated Autonomy Group has
developed and refined five key techniques that further
the research goal of making far more complex and
adaptive behavior easier to create and control. The
techniques include a social and organizational
relationship management engine, a composite agent
architecture, an agent goal apparatus, a structure for
capturing and applying procedural knowledge (tickets),
and the ability to bring these technologies to bear at the
right time and in the proper context through
connectors.

4.1 Social and Organizational Relationship
Management Engine

The modeling and simulation community is continually
being challenged to create rich, detailed models of ill-
defined problems. Many of these problems are
complex because of the involvement of human
decision-making and organizational behavior. Humans
and organizations have multiple levels of internal roles,
goals and responsibilities, frequently conflicting with
each other. While contemplating almost any decision,
humans must evaluate a myriad of goals that they are
currently attempting to achieve. These goals are
sometimes supportive of each other, but often they are
in conflict. Developing simulations that are capable of
capturing this complex, often unpredictable, behavior
is essential to realistically modeling large organizations
accurately.

In an effort to simplify the development of MAS
simulations and ease the integration of software agents

into existing simulations, an agent modeling
architecture called RELATE was created [4].
RELATE is an agent architecture for organizing agents
into relationships, and allowing for functional
specialization. The RELATE design paradigm focuses
on the relationships between individuals and within
organizations. By taking a relation-centric view of the
problem domain the developer is encouraged to
identify the various roles that are assumed by members
belonging to each relationship. These roles have
certain responsibilities and commitments, which tend
to be manifested as additional goals that must be
addressed by the various members of the relationship.
Once an agent is a member of a relationship, it must
base its action selection on its personality, its particular
concern for each goal, and the state of achievement of
each goal. Entering into a relationship connects or
binds agents to one another, resulting in the assignment
of new roles, goals and responsibilities. Relationships
are often formed to achieve something that is not
achievable by any one individual. In this way, agents
can take advantage of shared resources and capabilities
to achieve a goal that would otherwise be unattainable.

RELATE focuses the designer on six key concepts of
MAS simulations: relationships, environment, laws,
agents, things (objects), and effectors. A library of Java
classes was developed that enabled the researcher to
rapidly prototype an agent-based simulation,
supporting cross-platform and web-based designs.

In MARIA, researchers declare Organizations. An
organization is a collection of actor roles and
organizational information assurance policies.
Organizations range from formal enterprises
(commercial and government entities), to informal
collections of individuals with a common goal (hacker
clubs, social groups, etc). The organization may
represent a team (heterogeneous, interdependent roles)
or a group (homogeneous, interchangeable roles) [5].

Roles are placeholders, initially defined but unfilled by
actors, and represent a collection of behaviors specified
for an organization. Some of the typical roles critical
to an IA simulation are system users, system
administrators, managers, cyber attackers, and vendors.

A role consists of prerequisite Role Requirements, a set
of Role Goals, and Tokens. Role Goals are desires an
agent pursues. Actors who commit to a role are given
goals that are then added to the actor’s goal set.

Roles have requirements that must be met prior to
assuming a role. These prerequisites may be objects,
prerequisite roles, or some particular actor capability or

personality set attribute. Roles may also have
corequisites that must be maintained. Failure to
maintain corequisites could result in the role being
revoked by the organization (being fired, thrown out of
a group, etc.)

Tokens are abstract representations of objects that
agents possess or require.

4.2 Composite Agents

Multi-agent system simulations typically consist of
numerous high-level agents that represent entities
operating in a common, shared environment. The
agents residing in this shared environment, referred to
as the “outer environment”, interact with one another
and the objects in the environment. They sense their
environment, interpret the sensory input and make
decisions as to what actions to take. These actions in
turn affect the environment either directly through
agent-to-environment interactions or indirectly through
agent-to-agent interaction. In an effort to capture the
strengths of both cognitive and reactive agents, while at
the same time simplifying the design of such a complex
agent, a Composite Agent architecture has been
developed.

Composite Agents (CA) are composed of combinations
of cognitive and reactive agents (Figure 4.1). They
contain a set of cognitive Symbolic Constructor Agents
(SCAs) that work with sensory streams (or
impressions) from the outer environment to create a
symbolic inner environment (Einner) representing the
agent’s perspective of the outer environment (Eouter).
The SCAs define the agent’s sensor capabilities and are
tailored to sense specific aspects of the environment.
They also act to control and filter impressions of the
outer environment, so the agent isn’t overwhelmed in a
rich outer environment. Einner is influenced not only by
what the SCAs sense, but also by the CA’s internal
state. For instance, in a predator-prey simulation, if the
predator is hungry and senses an animal, it would show
up in Einner as food. On the other hand, if the predator
has just eaten, then the animal would appear as just
another animal in Einner.

Figure 4.1 A Composite Agent

The symbolic inner environment is the agent’s
perception of the shared outer environment within
which it operates. Einner has little resemblance to the
actual outer environment, rather it is an encoding of
Eouter optimized to suit the Composite Agent’s specific
function. The role of an SCA is not unlike the role of
radio navigation aid used by a pilot. The navigation
aid senses radio signals in the outer environment and
converts them into directional information that the pilot
can use to navigate the aircraft. The inner environment
used by the pilot for making decisions has little
resemblance to the view looking out the window, but it
is optimized for use by the pilot in navigating the
aircraft.

Combined with the SCAs is a set of Reactive Agents
that operate on the symbolic inner environment and
generate actions for the CA to perform. Each RA has a
set of possible goals and an apparatus for managing the
process of selecting the active goal or goals.

In MARIA there are two subclasses of agents; actors
(representing people) and infrastructures (representing
an organization’s information resources and processing
capabilities).

A MARIA actor is a modified composite-agent (Figure
4.2). An actor consists of

• Sensor set – Set of SCA’s
• Role set – Set of RA’s
• Ti – Token set (resources and access

rights)
• Ki –knowledge set
• ESi – emotional state,
• OPi – observable personality
• Si – skill state

Figure 4.2 A MARIA Composite Agent

The Role set is the set of all Organizational Roles to
which an agent has committed. This is implemented as
a set of RAs, where each RA represents a role. An
implied property for the actor is the set of all associated
Goals SGi. This is a set of all goals from all roles
assigned to an actor. The set of goals an actor
possesses from the numerous roles he is assuming
defines the actor’s behavior.

These goals are prioritized based on the actor’s internal
state (emotional, personality, and skill attributes) and
the perception of the environment. Actors choose high
priority goals and pursue them until they are
completed, another goal receives a higher priority, or
the agent decides the goal is no longer achievable.

The knowledge set Ki represents procedural problem
solving capabilities. This knowledge base provides the
actor with procedures to be used to achieve a goal.

The Actor’s tokens Ti represent the collection of all
objects the actor has collected.

The Personality state determines the actors’
commitment and dedication for each goal. These are
used by the goal apparatus to personalize the agent’s
goal prioritizing – thus creating outwardly observable
differences in actor behavior.

An Actor’s emotional state consists of a set of
attributes that are an actor’s current internal condition
or feelings at any instant in time. These states
represent a subset of the individual’s emotions. These
attributes may include the agent’s feeling of loneliness,
security, self-worth, and excitement.

The actor’s Observable Personality values represent a
relatively static set that defines that actor’s long-term
behavior. These values include propensities for risk,
loyalty to organizations, ethics, etc.

Skills represent an abstract set of ability values the
actors possess. These skills may include organizational
technical skills, social, information technology,
security, or management skills for example.

 The architecture, when combined with the other agent
components, facilitates the creation of complex agent
behavior through relatively simple components.

4.3 Reactive Agents and Goal Management

Composite Agents contain numerous Reactive Agents
(RAs), where each reactive agent is responsible for
promoting a specific behavior of the Composite Agent.
The set of RAs taken as a group, define the Composite
Agent’s set of high-level behaviors. The RAs operate
within the world of the inner environment. They take
as input sensory information from Einner, and produce as
output actions for the agent to perform.

Each RA has one or more goals specific to furthering
the RA’s behavior or function. So at any given time
there are numerous goals competing for the Composite
Agent’s attention. Just as humans have multiple goals
(sometimes conflicting), an agent too has multiple
goals it wishes to satisfy. In human decision-making,
goals are constantly shifting in priority, based on the
person’s context and state. Agents can mimic the
flexibility and substitution skills of human decision-
making through the use of a variable goal management
apparatus within the RAs. It is from this goal
apparatus where contextually appropriate, intelligent
behavior emerges. RAs interpret the symbolic inner
environment and through their goal apparatus, process
this information to balance their goals and return an
appropriate action for attaining their highest priority
goal or goals (Figure 4.3).

Goals have four components; a state, a measurement
method, a weight, and action or set of actions for
achieving the goal. The goal’s state is an indication of
whether a goal is in an active, inactive, or some other
domain specific state. The measurement method
translates the sensory input received by the RA into a
quantifiable measure of the current strength of a goal
and how well it is being satisfied. This permits an
agent to prioritize goals and adjust goal states based on
context. A goal may also have a weight attached that
can be used to adjust the importance or priority of the
goal based on experience. Tied to each goal is an
action or set of actions for achieving the goals under
varying circumstances. The end result is that within
the RA goal apparatus there are multiple goals that are
constantly changing -- moving up and down -- with the

top (active) goals dominating the agent and its
behavior.

Figure 4.3 Reactive Agent

Additionally, agents can discard behaviors that do not
further their goals, and increase the use of behaviors
that have proved successful in reaching goals. This
simple behavior serves as a reactive learning system
where the agent learns from the environment, based on
“what works” with no human expertise or intervention.

Goal switching based on a dynamically changing
environment produces innovative and adaptive
behavior, however, it is desirable to balance this with
doctrinally correct and appropriate actions. This
balance is achieved through the encoding of procedural
knowledge in a data structure called tickets.

4.4 Tickets

Symbolic Constructor Agents and the goal apparatus
were developed to control the agent’s sensory
capability and decision-making. In order to provide
agents with rich procedurally oriented knowledge
while still supporting adaptive behavior the agents
knowledge base and action set has been encoded in a
data structure called tickets. Tickets allow reactive
agents to apply procedural knowledge in context. They
define the agent’s action set, i.e., its means to achieve
its goals. They are used to organize procedural
knowledge and provide the ability to balance doctrinal
behavior with adaptive, innovative action, resulting in
enriched problem solving behavior.

Tied to each of an agent’s goals are one or more tickets
that define how to achieve the goals. The tickets may

have prerequisites or co-requisites that must be met in
order for a ticket to be active (see connectors below).
Additionally, tickets are composed of one or more
frames, with each frame being one or more actions or
behaviors. Various types of tickets have been defined,
with choices ranging from uninterruptible to
interruptible, and sequential to non-sequential.

Simply encoding procedural knowledge and linking it
to various goals is not sufficient for creating intelligent
behavior. The desire is to apply the most appropriate
procedures for a given situation. The problem is that in
a dynamic system the “given situation” not only
changes constantly, but also is so complex, the system
designer can’t conceive of and account for every
possibility. Therefore, the mechanism for determining
the “most appropriate” procedures must be flexible and
able to support the same level of complexity as the
changing contexts of the dynamic system. The ability
to take the correct action to match the situation is
provided through the use of an apparatus called
connectors.

MARIA actors possess two types of tickets; goal
tickets, and knowledge tickets. Goal tickets are
relatively static procedural steps that are bound to goals
at compile-time. Knowledge tickets reside in the
Knowledge set (Ki). These tickets bind to goals and
other tickets at run-time, creating dynamic,
unpredictable, yet appropriate behavior. This run-time
binding is also performed through connectors.

4.5. Connectors

Connectors represent work that is based on symbolic
types. They permit logical substitutions and
sequencing, and facilitate explanations of reasoning.
Connectors are a way to associate impressions, ideas
and actions with a given context and achieve a logical
sequence of behavior. Connectors are active objects
that sense and react to the environment. They activate
(extend) and deactivate (retract) based on the current
context. As the agent’s state and the state of the
environment changes, the connectors sense the changes
and extend or retract accordingly. By attaching
connectors to various elements within the system,
including tickets, the connectors signal the elements
state of readiness and level of fitness for the current
situation. With the connectors continually reacting to
the environment, behavioral and procedural knowledge
(tickets) can bind at runtime to fit the context as it
develops. This binding is based not only on the state of
the environment, but also on the goals of the agent and
its social interactions with other agents. In this way,

the correct procedural knowledge can be brought to
bear in the correct situation.

In MARIA connectors react to operations performed by
actors and infrastructure and have a potential for
affecting other actors and infrastructures.

Connectors, as implemented in MARIA, are defined by
the tuple {label, state, cardinality}.

4.5.1 Connector State – Extended or Retracted

Connectors have a Boolean state; extended or retracted.
A retracted connector is inactive, and cannot connect to
any other connector. An extended connector is
currently available for connecting. If a connection
occurs, and one of the connectors subsequently retracts,
the binding is broken, and the remaining extended
connector may bind to another extended connector. An
extended connector can be distinguished from a
retracted connector graphically by a small
perpendicular tick on the retraced connector (Figure
4.4).

Figure 4.4 Extended and retracted connectors

Connectors are extended and retracted by actors and
infrastructures to advertise services or request access to
services. When an infrastructure wishes to advertise
that it has a capability, it extends a socket connector.
When an actor requests a resource, he extends a plug
connector. If a socket accepts a plug, the two
connectors are said to bind.

Connectors can extend without the owner of the
connection being aware of this event. This ‘hidden’
connector can represent functionality on an
infrastructure for instance, that is not an advertised
capability. A buffer overflow vulnerability on a server
could be represented as a ‘hidden’ socket connector,
with special requirements to indicate knowledge of the
vulnerability, and skills required to exploit the
vulnerability.

4.5.2 Connector Labels and Ends

There are two types of connector ends: sockets and
plugs. Sockets represent processes that can be utilized
to access resources – a means to access information.
When an agent requires a service or resource, he
extends a plug connector and requests to bind to a
socket. If a socket exists that matches the plug then the
requesting agent binds to the resource or service.

Socket labels differ from plug labels. The tokens listed
on a socket (Tsocket) are the required tokens that must be
presented to bind to this socket. The tokens listed on a
plug (Tplug) are the tokens available to the owner of the
plug. A binding will not occur unless Tsocket ⊆ Tplug
(Figure 4.5).

Figure 4.5 Actor binding to an Infrastructure

4.5.3 Connector Cardinality

Connectors have a cardinality that specifies the number
of connectors that can simultaneously be bound to this
particular connector. A connector without a cardinality
label has a cardinality of one. A connector with a
cardinality of zero represents a special type of
connector called a Listener Connector (Figure 4.6).

Figure 4.6 Socket Cardinality

Connectors are a powerful tool that binds the
components of the simulation together. Properties of
agents connect to tickets and goals to activate and
deactivate these activities. Agents extend and retract

connections to advertise and use services of other
agents.

Furthermore, connector links can be traversed to
explain agent reasoning. These connector-based
components facilitate rapid development of modular,
connector-based simulations.

4.6 MARIA

MARIA was developed as a proof of principle
implementation of these technologies, with the goal of
modeling the IA domain. The simulation allows
researchers to rapidly create scenarios, and investigate
the results of actor’s actions and inactions as they
pertain to an organization’s information security. The
composite architecture, combined with the connector-
based simulation provides a modular system for
modeling a complex domain.

5. MOVES Agent Research: What’s
Ahead

The multi-generational MAS research and insight
gained over the past three years has manifested itself in
increasingly complex simulations that were
progressively easier to design and implement. This
progress has allowed the MOVES Computer-Generated
Autonomy Group to branch off into some very diverse
areas of research.

 5.1. Computer Generated Interactive Stories

These research projects represent exciting new
directions for the MOVES Institute. The domains
include interactive story generation and agent-based
simulation auto-narration.

The Department of Defense (DoD) uses modeling and
simulation for a variety of purposes, such as to conduct
joint training exercises, develop and evaluate new
doctrine and tactics, analyze alternative force
structures, and study the effectiveness of new weapons
systems. Advances in information technology have
lowered the cost of computer-based models and
simulation, making modeling and simulation a cost-
effective alternative to live training and exercises.
While these advances have gone a long way towards
creating technically accurate simulations they have not
addressed the issue of presenting realistic scenarios
while supporting user interaction.

The goal of interactive simulation, whether it is a
virtual story or a combat simulation, is to present the

user with an experience that suspends their disbelief in
the artificialities imposed by the system. In this way,
the user feels it is a “real” experience. From the DoD
perspective, this results in more realistic and effective
training, as well as more accurate assessments of the
systems, tactics or doctrine being evaluated.

The entertainment industry has long known that to
achieve this suspension of disbelief, it is not sufficient
to simply produce a technically accurate simulation. It
is the unfolding of events and presentation of the story,
along with rich believable characters that makes for a
truly effective and immersive experience. The
Computer-Generated Autonomy Group is exploring the
use of autonomous agent technology to guide the
behavior of the simulation characters, while
constructing a dynamic, interactive story line that is
free to unfold based on the actions of the user, the
internal states of the autonomous characters, the laws
of the simulation world and the global state of the
simulation environment.

A system capable of controlling the actions of
autonomous computer generated characters within the
guidelines of a story or simulation scenario must
support complicated worlds with multiple characters
and rich plot complications. At the same time, it must
be adaptable to multiple domains, whether it be
presenting training scenarios in a ground combat
simulation or immersing the user in an action-
adventure story.

Current approaches based on artificial intelligence
planning techniques can support complicated plots with
a diverse set of story characters, but they are extremely
domain-knowledge specific. Extensive time and effort
is required to generate new knowledge bases and
dependency networks for each new story. Algorithmic
approaches using tree or graph structures to store story
events provide a domain independent methodology, but
for complicated stories, the tractability of these
knowledge structures can be overcome by the
combinatorial problem of evaluating all possible plots
each time an event occurs [6]. The problem of creating
a general interactive story system is one of developing
an architecture that scales well and is domain
independent.

The Computer-Generated Autonomy Group has
developed an interactive, agent-based story system
based strongly on the use of tickets and connectors to
present highly interactive and dynamic stories. A
typical story consists of goal driven autonomous
characters, a narrative structure aligned closely with
the protagonist, and a collection of potential scenes,

along with media, dialog and character interactions to
populate the scenes. These story elements are
combined dynamically at runtime to generate a story
that adapts to the participants interaction and the state
of the participant’s character [7].

Figure 5.1 is a screenshot of a scene in which two
autonomous characters are conversing in front of a
building. The selection of the specific scene within the
context of the story is non-scripted. A stage manager
agent selects the scene to be played based on many
different criteria. Some of these include the
protagonist’s personality, what the protagonist has
experienced thus far in the story, and where the story is
with regards to its progression through its narrative
phases. Likewise, the interactions between the two
characters as the scene plays out, and the consequences
of those interactions, are non-scripted. The story is in
essence self-organizing, built from the bottom up from
a pool of story elements. By taking a bottom up
approach, the system is able to overcome the scaling
and complexity problems of traditional AI based
methods while supporting domain independent story
content.

Figure 5.1 Two autonomous characters conversing

5.2. Agent-Based Simulation Auto-Narration

One of the most exciting research projects currently
underway is an agent based simulation auto-narrator.
When watching MAS simulation demonstrations with
dots moving about a screen, a human narrator describes
what the dots are doing. But is this interpretation and
narration of the agent actions coming from the narrator
or from the model? Until the models narrate their own
behavior there is no way to know. Through the use of
self-documenting connectors, analysts will not only be

able to study behavior in terms of “what” happened,
but the models themselves will provide insight as to
“why” it happened.

6. Conclusion

Multi-agent systems (MAS) simulation and
autonomous behavior have tremendous potential for
application in defense and entertainment/defense
projects. The Computer Generated Autonomy Group
has made tremendous progress in bringing MAS
simulation techniques to Department of Defense (DoD)
models and simulations, and advancing the start-of-the-
art to make adaptive behavior far easier to create and
control. Research projects in helicopter reconnaissance
[8], land combat [9], cognitive modeling of land
navigation [10], modeling organizational changes in
military units [11], naval planning, [12], personnel
management [13], human behavior modeling [14], and
networked virtual environments [15] have provided
valuable insight into their respective problem domains
and been well received by their DoD sponsors.

But this work is just the beginning. In the not too
distant future, the methodology and tools for creating
MAS simulations will be as accessible as those
currently available for traditional discrete-event
simulations.

References

[1] Hiles, J., VanPutte, M., Osborn, B., Zyda, M.,
“Innovations in Computer Generated Autonomy at
the MOVES Institute”, Technical Report NPS-
MV-02-002, Naval Postgraduate School,
Monterey, California, 2001.

[2] U.S. Department of Defense Directive S-3600-1,
1996 cited in Joint Chiefs of Staff, “Information
Assurance: Legal, Regulatory, Policy, and
Organizational Considerations”, 3rd Edition, U.S.
Department of Defense. September 17, 1997.

[3] VanPutte, M., “A Computational Model and
Multi-Agent Simulation of Information
Assurance”, Dissertation, Naval Postgraduate
School, Monterey, CA, 2002.

[4] Roddy, K. and Dickson, M., “Modeling Human
And Organizational Behavior Using A Relation-
Centric Multi-Agent System Design Paradigm”,
Master’s thesis, Naval Postgraduate School,
Monterey, CA, 2000.

[5] Kang, M., Waisel, L.B., Wallace, W.A. “Team
Soar – A model for team decision Making”,
Simulating Organizations, AAAI Press, 1998.

[6] Weyhrauch, P., “Guiding Interactive Drama”.
Ph.D. thesis, Technical Report CMU-CS-97-109,
School of Computer Science, Carnegie Mellon
University, 1997.

[7] Osborn, B., “An Agent-Based Architecture for
Computer-Generated Interactive Stories”,
Dissertation, Naval Postgraduate School,
Monterey, CA, 2002.

[8] Unrath, C., “Dynamic Exploration of Helicopter
Reconnaissance Through Agent-based Modeling”,
Master’s thesis, Naval Postgraduate School,
Monterey, CA, 2000.

[9] Mert, E. and Jilson, E., “Modeling Conventional
Land Combat in a Multi-Agent System Using
Generalization of the Different Combat Entities
and Combat Operations”, Master’s thesis, Naval
Postgraduate School, Monterey, CA, 2001.

[10] Stine, J., Representing Tactical Land Navigation
Expertise, Master’s thesis, Naval Postgraduate
School, Monterey, CA, 2000.

[11] Pawloski, J., “Modeling Tactical Land Combat
Using a Multi-Agent System Design Paradigm (GI
Agent)”, Master’s thesis, Naval Postgraduate
School, Monterey, CA, 2001.

[12] Ercetin, A., “Operation-Level Naval Planning
Using Agent-Based Simulation”, Master’s thesis,
Naval Postgraduate School, Monterey, CA, 2001.

[13] French, S., “Analyzing Projected Personnel
Retention Utilizing Complex Adaptive Systems”,
Master’s thesis, Naval Postgraduate School,
Monterey, CA, 2001.

[14] Hennings, C., “Designing Realistic Human
Behavior into Multi-Agent Systems”, Master’s
thesis, Naval Postgraduate School, Monterey, CA,
2001.

[15] Washington, D., “Implementation of a Multi-
Agent Simulation for the NPSNET-V Virtual
Environment Research Project”, Master’s thesis,
Naval Postgraduate School, Monterey, CA, 2001.

Author Biographies

MAJOR MICHAEL VANPUTTE is a Ph.D.
candidate in the Computer Science Department, Naval
Postgraduate School and a member of the MOVES
Institute. His dissertation “A Computational Model
and Multi-Agent Simulation of Information Assurance”
involved the development of a mathematical and
descriptive model of Information Assurance, and a
multi-agent implementation of these models. Major
VanPutte is an active-duty combat engineer officer. He
received his BS in Information Systems from the Ohio
State University and MS in Computer Science from the
University of Missouri-Columbia. His current interests
are multi-agent systems, information assurance, and
computer-generated autonomous behavior.

COMMANDER BRIAN OSBORN is Ph.D.
candidate in the Computer Science Department of the
Naval Postgraduate School and a researcher in the
MOVES Institute. His concentrations include agent-
based modeling and simulation, computer generated
autonomous behavior and interactive narrative. He is
the principle implementer of the MOVES Story
Engine, developed with the guidance of Professor John
Hiles. His dissertation project “An Agent-Based
Architecture for Computer-Generated Interactive
Stories” explores the use of autonomous agent
technology to guide the behavior of the simulation
characters, while constructing a dynamic, interactive
story line based on the actions of the user, the internal
states of the autonomous characters and the laws of the
simulation environment. He is a principal investigator
in the MOVES Center for the Study of Potential
Outcomes where the MOVES Story Engine and agent-
based simulation techniques are being applied to the
problem of anticipating unexpected actions on the part
of systems and organizations such as terrorist groups.
CDR Osborn is an active duty Naval aviator. He holds
a BA in Applied Mathematics (U Maine, Orono) and a
MS in Operations Research from the Naval
Postgraduate School.

PROFESSOR JOHN HILES is a research professor
in computer science at the Naval Postgraduate School,
and a program manager for the MOVES Institute’s
Army Game Project. Professor Hiles’s interests
include multi-agent systems, complex adaptive system
models and simulations, and the software-systems
implications of the biochemistry of the living cell.
Professor Hiles has been an advisor to the Marine
Corps and Army. He is a frequent participant in the
Highlands Forum and an advisor to the Bios Group. In
1992, Professor Hiles began work with adaptive, agent-
based models and simulations at Maxis, the company

responsible for SimCity. He was first to apply the
striking characteristics of SimCity in games/systems
designed for government and business. His seven-year
focus on simulations such as SimHealth, TeleSim, and
Project Challenge refined and extended the use of
adaptive, agent-based methods and computer-game
human interfaces in commercial products.

